반응형

앙상블 기법

  • 단일 머신러닝 모델을 연결하여 더 효율적인 모델을 만드는 기법
  • 앙상블의 아이디어는 많은 시행의 결과가 이성적으로 합리적인 결과를 기대함
  • 크게 Bagging과 Boosting 방법으로 나눈다.

Bagging(bootstrap agrregating)

  • 샘플을 여러번 뽑아(Bootstrap) 각 모델을 학습시켜 결과물을 집계(Aggregration)
  • Train데이터에서 임의로 여러개의 샘플을 추출하여 모델 학습하는 과정을 반복하여 개별 학습모델을 생성
  • 각 모델은 서로 독립적
  • 각 모델별로 Test 데이터를 예측한 값으로 투표(Voting) 또는 평균(Regression)을 통해 최종 예측
  • 이러한 Bagging 기법을 이용한 모델이 Random Forest

출처 : https://icim.nims.re.kr/post/easyMath/838

Boosting

  • 잘못 분류된 샘플에 더 많은 가중치를 주어 학습
  • Bagging과 달리 모델 결과에 가중치를 주어 다음 모델에 영향을 끼침(Sequential 하다)
  • 잘못 분류된 데이터에 집중하여 새로운 분류 규칙을 만드는 단계를 반복

출처: Medium (Boosting and Bagging explained with examples)

  • Boosting 모델
    1. Adaboost
    2. XGBoost
    3. LightGBM
    4. CatBoost

Bagging과 Boosting의 장단점

  1. Boosting은 Bagging의 비해 오류가 적다.
  2. Boosting은 Overfitting 될 가능성이 있으며 속도가 느리다

 

출처 : https://bkshin.tistory.com/entry/%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D-11-%EC%95%99%EC%83%81%EB%B8%94-%ED%95%99%EC%8A%B5-Ensemble-Learning-%EB%B0%B0%EA%B9%85Bagging%EA%B3%BC-%EB%B6%80%EC%8A%A4%ED%8C%85Boosting

 

머신러닝 - 11. 앙상블 학습 (Ensemble Learning): 배깅(Bagging)과 부스팅(Boosting)

앙상블(Ensemble) 앙상블은 조화 또는 통일을 의미합니다. 어떤 데이터의 값을 예측한다고 할 때, 하나의 모델을 활용합니다. 하지만 여러 개의 모델을 조화롭게 학습시켜 그 모델들의 예측 결과들

bkshin.tistory.com

https://icim.nims.re.kr/post/easyMath/838

 

앙상블의 Bagging과 Boosting | 알기 쉬운 산업수학 | 산업수학혁신센터

 

icim.nims.re.kr

 

반응형
반응형

머신러닝 또는 딥러닝 시 고려해야 할 사항 중 데이터 전처리 내 Feature 선택에 대한 방법들

 

Feature란?

모델 학습 시 사용되는 입력 값. 즉 일반적으로 말하는 머신러닝 또는 딥러닝에서 사용되는 '독립변수들'이라고 보면 된다.

*이 글에서는 Feature라는 단어 대신 독립변수라는 단어를 사용.

 

학습시 어떤 독립변수를 사용할 지에 따라 학습 시간, 성능에 많은 영향을 끼친다.

크게 독립변수들은 숫자형과 문자형 두가지로 분류한다.

 

python3 pandas dataframe 예시 코드

import pandas as pd
sample = pd.read_csv(...) #샘플 데이터 파일을 읽는다.

print(sample.dtypes[sample.dtypes == "object"].index) #문자형 독립변수들
print(sample.dtypes[sample.dtypes != "object"].index) #숫자형 독립변수들
print(sample.info()) # 각 컬럼의 데이터 타입을 알 수 있다

 

변수 선택 방법을 통해 불필요한 독립변수들을 제거하는 방법

  1. wrapper방법 : 독립변수를 여러개의 하위집합으로 만들어 각각 모델을 학습 및 평가하여 가장 좋은 성능을 선택
    적용 예시 : https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
  2. filter방법 : 각 독립변수들과 종속변수에 대한 상관관계를 평가하여 선택 (지도학습에서 사용)

*종속변수는 학습시 사용되는 정답값

 

  • Feature Selection: Select a subset of input features from the dataset.
    • 비지도 학습 : 종속변수를 사용하지 않는다 (e.g. remove redundant variables).
      • 독립변수들 간의 상관관계를 이용하여 선택
    • 지도학습 : 종속변수를 사용한다. (e.g. remove irrelevant variables).
      • Wrapper: 독립변수들의 하위집합 중 성능이 좋을 것을 찾는다.
        • RFE
      • Filter: 종속변수와 독립변수의 관계를 기반하여 독립변수 하위 집합을 선택한다.
        • Statistical Methods
        • Feature Importance Methods
      • Intrinsic(Embedded): 학습 중 자동적으로 알고리즘으로 독립변수를 선택한다.
        • Decision Trees
        • Lasso
        • Redge
        • Elastic Net
  • Dimensionality Reduction: 입력데이터를 저차원 공간에 반영(?)
    Dimensionality Reduction의 경우 추가 공부하여 이후 다시 작성할 예정...

위 지도학습 내 Intrinsic(Embedded) 방법에 대해 다른 포스터에서 다시 작성할 예정

 

아래 사진은 독립변수들의 데이터 타입을 나타내는 사진 예시이다.

 

 

 

결론적으로 Feature selection에 대한 정답은 없다. 처음에는 휴리스틱하게 판단한 정보를 가지고 테스트를 하면서 점차적으로 성능을 끌어올리는게 현재까지는 최선의 방법인 것으로 판단된다.

 

참고 사이트 : https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/

반응형
반응형

머신 러닝 및 딥 러닝을 배우기 위해 kaggle 사이트에서 연습하며 개인 메모 용도로 작성

첫 과제로 일반적으로 많이 알려진 집값 예측 문제를 풀기로 하였다.

ML/DL 관련 강의는 몇개 수강하였지만 실질적으로 문제를 풀어본 적이 없어

해당 내용을 참고하여 배웠던 내용이랑 몰랐던 부분을 학습하는 목적으로 시작한다.

참고 URL : https://www.kaggle.com/munmun2004/house-prices-for-begginers#II.-EDA-&-FE-

 

[한글커널][House Prices]보스턴 집값 예측 for Begginers

Explore and run machine learning code with Kaggle Notebooks | Using data from House Prices - Advanced Regression Techniques

www.kaggle.com

 

머신러닝 또는 딥러닝은 아래 4단계로 진행한다.

1. 데이터 수집

2. 데이터 가공

3. 모델 학습

4. 예측 또는 분류

 

머신러닝 또는 딥러닝은 위 4단계로 진행이 되지만 프로젝트를 하기 위해서는 아래 순서로 생각하며 설계를 한다.

  1. 목적설정 (가설) : 어떤 일을 할 것인가
  2. 자료수집 : 선택한 일에 대해 어떤 학습을 할 것이며 필요한 데이터가 어떤것이 있는지 확인
  3. 모델 생성 : 수집된 데이터로 모델 생성
  4. 평가 : 생성된 모델을 사용하여 실제 적용
  5. 피드백

 

*** 개인 정리 ***

  • 이상치 제거 (극단값 제거) : 모델 학습에 성능 저하를 가져올 수 있는 데이터를 찾아 제거한다.
  • 다중공선성 문제 : 회귀분석에서 발생하는 문제. 특정 변수들 간의 상관관계가 높을 경우 발생. 회귀분석은 독립된 변수들 간에 변화를 학습하여 예측하는 모델이다. 특정 변수들의 상관도가 높으면 해당 변수의 변화값이 모델에 부정적 영향을 미치게 된다.
    참고 사이트 : https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=vnf3751&logNo=220833952857
  • 결측치 확인 및 처리 : 손실데이터 즉 값이 없는 데이터를 의미한다. 처리 방법은 데이터 케이스별 및 결측량에 따라 다르게 처리.
  • 수치(순서)형 데이터 : 연속 또는 이산형 데이터. 예) 키 / 몸무게 / 출생아 수 / 주가 등
  • 범주(명목)형 데이터 : 몇개의 범주로 나누어진 데이터. 예) 성별 / 혈액형 등

 

*** 분석 ***

 

Stacked Regressions : Top 4% on LeaderBoard

Explore and run machine learning code with Kaggle Notebooks | Using data from House Prices - Advanced Regression Techniques

www.kaggle.com

반응형

+ Recent posts