반응형

시계열 분석에 대한 내용 정리

 

시계열 데이터란?

  • 시간에 따라 순차적으로 저장된 데이터
  • 정상 시계열 : 시계열의 평균, 분산, 공분산이 일정하고 일정한 추세가 없으면 정상 시계열
  • 비정상 시계열 : 정상 시계열에 만족하지 못한 시계열, 주로 현실에서 수집한 데이터들이 이에 해당
  • 시계열 예시 : 주가, 상품 판매 추세, 날씨
  • 비정상 시계열을 정상 시계열 형태로 가공하여 모델 학습

 

시계열 분석 방법

  1. 추세(Trend) : 시간에 따른 움직임
  2. 계절성(Seasonality) : 계절 변화가 표현
  3. 주기(Cyclical) : 계정성 이외의 기간적인 데이터
  4. 불규칙(Irregular) : 패턴이 없는 불규칙적인 데이터

 

시계열 데이터 모델

  • ARMA(Auto-regressive Moving Average)
    • AR(자기회귀모형)과 MA(이동평균모형)이 결합된 모델
  • ARIMA : 자기회귀누적이동평균 모델
    • 비정상적 시계열 자료에 대한 분석 방법
    • 4단계로 구분 : 1. 모형식별 > 2. 모수 추정 > 3. 모델 적합 > 4. 예측
    • SARIMA(Seasonal ARIMA) : 비정상 시계열 자료에 계절효과가 추가
  • ES(Exponential Smoothing) : 지수 창함수를 사용하여 시계열 데이터를 완만하게 만드는 방법
    • Moving Average방법과 유사
    • N개에 포함된 모든 데이터에 각각 다른 비중을 부여하여 하지만 최근 실적에 가중치를 더 두고 산술평균을 계산하여 다음을 예측
  • LSTM(Long Short-Term Memory) : 공부 후 작성 예정

 

반응형
반응형

8가지의 머신러닝 모델 정확성 증가 방법

우리는 100% 완벽한 데이터를 가지고 모델을 생성할 수 없기 때문에 오차가 있다고 가정한 내에서 가장 높은 성능을 나타내는 모델을 구현하기 위해 노력한다. 모델 성능을 높이기 위해서는 EDA(탐색적 데이터 분석) 가 필수적이다.

 

  1. 학습 데이터 추가
    • 데이터가 너무 적으면 모델 성능이 잘 나오지 않는다.
    • 하지만 너무 많은 데이터로 학습할 시 Overfitting(과적합)문제가 발생할 수 도 있다.
  2. 결측치 및 이상치 제거
    • 결측치가 있으면 학습이 안될 수 있다.
    • 이상치는 학습에 영향을 많이 끼친다. 꼭 제거할 필요는 없고 이상치 확인 후 처리 방법을 고민한다.
  3. Feature Engineering
    • 존재하는 데이터로부터 데이터 변환 또는 생성하는 과정.
    • Feature Transformation : 정규화, Log변환, 차원축소 등..
    • Feature Creation : 매일 판매량 데이터에서 각 판매일에 대한 휴일여부를 추가
  4. Feature Selection
    • 학습에 필요한 Feature를 선택하는 과정.
    • https://blackas119.tistory.com/71?category=779040 참고
  5. Multiple algorithms
    • 좋은 성능을 나타내는 알고리즘을 선택하는 것은 실제로 하는게 어려운 일입니다.
    • 따라서 여러가지 알고리즘에 대해 적용하고 성능을 확인해봐야 한다.
  6. Algorithm Tuning
    • 알고리즘 사용시 여러가지의 매개변수를 선택하게 된다. 적절한 매개변수를 통해 정확한 성능을 나타내도록 한다.
    • 예를 들어, K-means 알고리즘에서 적절한 K 를 찾는 과정
  7. Ensemble Method
  8. Cross Validation

참고 사이트 : https://www.analyticsvidhya.com/blog/2015/12/improve-machine-learning-results/

 

How To Increase Accuracy Of Machine Learning Model

8 proven ways for improving machine learning model accuracy which includes cross validation, engineering, ensemble & outliers in data science.

www.analyticsvidhya.com

 

반응형
반응형

머신러닝 또는 딥러닝 시 고려해야 할 사항 중 데이터 전처리 내 Feature 선택에 대한 방법들

 

Feature란?

모델 학습 시 사용되는 입력 값. 즉 일반적으로 말하는 머신러닝 또는 딥러닝에서 사용되는 '독립변수들'이라고 보면 된다.

*이 글에서는 Feature라는 단어 대신 독립변수라는 단어를 사용.

 

학습시 어떤 독립변수를 사용할 지에 따라 학습 시간, 성능에 많은 영향을 끼친다.

크게 독립변수들은 숫자형과 문자형 두가지로 분류한다.

 

python3 pandas dataframe 예시 코드

import pandas as pd
sample = pd.read_csv(...) #샘플 데이터 파일을 읽는다.

print(sample.dtypes[sample.dtypes == "object"].index) #문자형 독립변수들
print(sample.dtypes[sample.dtypes != "object"].index) #숫자형 독립변수들
print(sample.info()) # 각 컬럼의 데이터 타입을 알 수 있다

 

변수 선택 방법을 통해 불필요한 독립변수들을 제거하는 방법

  1. wrapper방법 : 독립변수를 여러개의 하위집합으로 만들어 각각 모델을 학습 및 평가하여 가장 좋은 성능을 선택
    적용 예시 : https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
  2. filter방법 : 각 독립변수들과 종속변수에 대한 상관관계를 평가하여 선택 (지도학습에서 사용)

*종속변수는 학습시 사용되는 정답값

 

  • Feature Selection: Select a subset of input features from the dataset.
    • 비지도 학습 : 종속변수를 사용하지 않는다 (e.g. remove redundant variables).
      • 독립변수들 간의 상관관계를 이용하여 선택
    • 지도학습 : 종속변수를 사용한다. (e.g. remove irrelevant variables).
      • Wrapper: 독립변수들의 하위집합 중 성능이 좋을 것을 찾는다.
        • RFE
      • Filter: 종속변수와 독립변수의 관계를 기반하여 독립변수 하위 집합을 선택한다.
        • Statistical Methods
        • Feature Importance Methods
      • Intrinsic(Embedded): 학습 중 자동적으로 알고리즘으로 독립변수를 선택한다.
        • Decision Trees
        • Lasso
        • Redge
        • Elastic Net
  • Dimensionality Reduction: 입력데이터를 저차원 공간에 반영(?)
    Dimensionality Reduction의 경우 추가 공부하여 이후 다시 작성할 예정...

위 지도학습 내 Intrinsic(Embedded) 방법에 대해 다른 포스터에서 다시 작성할 예정

 

아래 사진은 독립변수들의 데이터 타입을 나타내는 사진 예시이다.

 

 

 

결론적으로 Feature selection에 대한 정답은 없다. 처음에는 휴리스틱하게 판단한 정보를 가지고 테스트를 하면서 점차적으로 성능을 끌어올리는게 현재까지는 최선의 방법인 것으로 판단된다.

 

참고 사이트 : https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/

반응형

+ Recent posts